Artificial Boundary Method for European Pricing Option Problem
نویسندگان
چکیده
منابع مشابه
A Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملInvestment system specific European option pricing intervals
Consider an investment system with a nonnegative expected return in a one period economy. We show that, for an option with a given strike price, there exists a pricing interval [pC , pW ] such that replacing the original investment with the option will benefit judging by the Kelly criterion only when the price of the option lies outside of the interval. More specifically, buying call options wi...
متن کاملA Newton Method for American Option Pricing
The variational inequality formulation provides a mechanism to determine both the option value and the early exercise curve implicitly [17]. Standard finite difference approximation typically leads to linear complementarity problems with tridiagonal coefficient matrices. The second order upwind finite difference formulation gives rise to finite dimensional linear complementarity problems with n...
متن کاملA Krylov subspace method for option pricing
We consider the pricing of financial contracts that are based on two or three underlyings and are modelled using time dependent linear parabolic partial differential equations (PDEs). To provide accurate and efficient numerical approximations to the financial contract’s value, we decompose the numerical solution into two parts. The first part involves the spatial discretization, using finite di...
متن کاملNumerical Solution of Pricing of European Put Option with Stochastic Volatility
In this paper, European option pricing with stochastic volatility forecasted by well known GARCH model is discussed in context of Indian financial market. The data of Reliance Ltd. stockprice from 3/01/2000 to 30/03/2009 is used and resulting partial differential equation is solved byCrank-Nicolson finite difference method for various interest rates and maturity in time. Thesensitivity measures...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: East Asian Journal on Applied Mathematics
سال: 2020
ISSN: 2079-7362,2079-7370
DOI: 10.4208/eajam.080320.270420